The Software Life Cycle

Software Engineering
Andreas Zeller Saarland University

SIMPLY EXPLAINED

SOMETHING

GREAT
SOFTWARE

DEVELOPMENT PROCESS

A Software Crisis

Code and Fix

Build first version

(1950-)

Modify until
client is satisfied

Operate

Code and Fix: Issues

® No process steps — no specs, docs,
tests...

® No separation of concerns — no
teamwork

® No way to deal with complexity

Code and Fix

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

Communication

6.6 Map Series Tool

Use Case Description

Communicatio
Summary | User generates one or more maps from a series of

n maps for a given boundary feature (compartment,
landscape etc)

Actors | EIMS User

project initiation Pre-Condttions | User requires one or more maps sheets from a series,
for a boundary feature.

Post-Conditions | Map or series of maps is generated and printed

Priority | Required

Scenario

1) User starts the tool.

System displays a list of map senies that the user can select from. Default
map senes will be ‘Landscape 1:7920". Can be set at any scale

2) User selects map series on form.

System then determines if any boundary features are selected.
A. Features Selected.

I. If features are selected, it asks the user to if they want to
generate a map senes for the selected feature. Only one feature can
used at a time

B. No Features Selected:

I If no features are selected, or user opts to select the feature
manually, the system prompts the user to select the district and
compartment of interest from pull downs. It then zooms to that
location, generates the map sheet boundaries, draws them with the
map sheet names

3) User can select individual sheets on screen, or select to print just an
index map, or the entire series.

System starts generating and printing maps based on the selected
sheets.

4) User collects maps from printer

Notes

Deployment

Tool in ArcMap and in ArcGIS Server

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

Planning

1998 1999 2000 2001 2002 2003 2004 2005 2006
ID_|Task Name Q4]01]02[03]|04|01[02[Q3|04|0Q1[02]03|Q4|Q1[Q2]Q3|04|01[Q2|03|Q4|01[Q2[03|Q4|Q1[Q2[Q3]|04|Q1]|02[Q3]Q4|Q1[Q2
1 |Detectors |
2 R&D and prototypes
3 Construction
- Installation °
S |DAQ system Plannlng
6 Architecture/Protocd R :
7 Technology choxes eStImatlng
g Hardware Developm SChedUIing
9 Production/Purchasd tracking
10 Software Developmd
11 System Instzlation/Integration/tes
12 LHCb startup
13 |Control system (DCS)
14 UR (sub-detectors, hall infrastructure)
15 Architecture/Evaluations/R&D
16 Interface technology recommendations
17 Interim development/Test beams/ProdL
i8 Final Technology/Product choice
1% Acquisition
20 Common infrastructure development
21 Subdetector system s development
22 System Instalation/Integration
23 LHCb startup

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

Waterfall Model (1968)

Microsoft Outlook™ 2000 Object Model Extended View

Updated for Ostlook 2000 by Micre Eye, Inc

Modeling

analysis
design

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

aterfall Model

R B A » F ' e L ’
A v » yF e ’ g
F J L TR N T . » AN * Sam s i Sl .
MY sy e AL T A LR A
My R aaw BRIV E.
ST - A S

L 'o‘-‘.“.‘. ‘\.‘-‘-v. L e
U vt WU, L) 3

()rdﬁﬁ“

OSrxdexr)L -
OLAE Y

OXxAex 22 w=-

Construction

#ifdef TRACE

31 ¥ gYiLrpm - code
{
fpxrintt test
ewxxit (2)
)}
#endit <
- e.‘\\e“"
- (.,r_del*\ e ax ¢ » S

. 0""”"'0000.

- .e)
/™ dl\(""at « "\ Awm wsed - . —n U

e —

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

Deployment

Deployment

delivery
support
feedback

Waterfall Model

(1968)

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery

support
feedback

SIMPLY EXPLAINED

WE'RE
PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER
BEEN

WOW!
THAT SOUNDS
EXCITING!
AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE
THERE?

WE'RE
PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER

WOW!
THAT SOUNDS
EXCITING!
AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE
THERE?

ajod » 6aab

ajod 6aab
=l
I
Raa————
IS Ty,
w
0
@
®
==
e
Qoo

THAT WILL BE
EASY.

WE ALREADY SPENT
& MONTHS TO
DRAW THE
MAPS

WATERFALL

Waterfall Model

(1968)

Real projects rarely follow a sequential
flow

Hard to state all requirements explicitly
No maintenance or evolution involved
Customer must have patience

Any blunder can be disastrous

Boehm’s first law

Errors are most frequent
during requirements and design activities

and are the more expensive
the later they are removed.

Problem Cost

B Relative cost of problem per phase

30,0
22,5
15,0

7,5

0,0
Coding Unit test Component test System test Field

Incremental Model

Features

Increment #3

Communication

project initiation
requirements

Planning

estimating
scheduling

tracking

Increment #2 Modelng

analysis
Construction
code

design
test

Communication

project initiation

requirements

Deployment

delivery

Planning

estimating
scheduling

Increment #|1

support
feedback

Modeling -
analysis

design
Construction
code

test

Communication

project initiation

requirements
Planning
estimating

scheduling
tracking

Deployment

delivery

support
feedback

Modeling -
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Time

Incremental Model

® Each linear sequence produces a
particular “increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources

Prototyping

Communication = Quick Plan

Deployment and

Feedback Quick Design

Prototype
Construction

Prototypes

Top Layer (GUI)

Bottom Layer

Horizontal Prototype

Prototypes

Top Layer (GUI)

Bottom Layer

Vertical Prototype

Top Layer (GUI)

Bottom Layer

Prototypes

® A horizontal prototype tests a particular
layer (typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into
a final result!

Spiral Model

(1988)

Planning /
Modeli
Communication 7 \oemg

(] ’
Construction

Deployment + Feedback

System maimntenance
est t

System cevelopment

B Concept development

Spiral Model

System is developed in series of
evolutionary releases

Milestones for each iteration of the spiral
Process does not end with delivery

Reflects iterative nature of development

Unified Process

(1999)

Inception

Software

Communication Planning

Increment

Production Elaboration

Deployment Modelling

Construction

Transition — — Construction

Inception

Inception

Communication [Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline

Elaboration

Planning

® Refines and expands
preliminary use cases Y\ Elaboration

® Provides architecture
and initial design M-
model

Construction

Builds (or acquires)
software components
according to architecture

Completes design model

Includes implementation,
unit tests, acceptance tests

Modelling
Construction — .
— Construction

Transition

® Software given to end users for beta
testing

® Feedback reports defects and changes

Deployment

Construction

Transition —

Production

Software e Software is deployed
Increment

® Problems are monitored
Production

Deployment

Re-lteration

Communication

;
-i

§
*:-

.'?’
“”29

® [eedback results in new

iteration for next
Deployment

feRN
A5
SIRL :E.}fZ"
SR
Q NMe
h ‘

Unified Process

Inception

Software

Communication

Planning

Increment

Production Elaboration

Deployment Modelling

Construction

Transition — — Construction

Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® |ntegrates with UML modeling techniques
(more on this later)

Agile
Alliance

Manifesto for Agile Software Development (2001)

® |ndividuals and activities over processes and tools.

® Working software over comprehensive
documentation.

® Customer collaboration over contract negotiation.

® Responding to change over following a plan..

What is Agile Development?

® Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven!?

® Agility = ability to react to changing situations
quickly, appropriately, and effectively.

® notice changes early

® initiate action promptly

® create a feasible and effective alternative plan quickly

® reorient work and resources quickly and effectively

Agile!?

Communicatio
n

project ini’
Planning

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery
support
feedback

Incremental Model

Features

Increment #3

Communication

project initiation
requirements

Planning

estimating
scheduling

tracking

Increment #2 Modelng

analysis
Construction
code

design
test

Communication

project initiation

requirements

Deployment

delivery

Planning

estimating
scheduling

Increment #|1

support
feedback

Modeling -
analysis

design
Construction
code

test

Communication

project initiation

requirements
Planning
estimating

scheduling
tracking

Deployment

delivery

support
feedback

Modeling -
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Time

Agile Processes

Time

Waterfall Iterative Agile Processes

Implement ‘
Design

D

Scope

Credits: Prof. Bodik

Agile vs. Plan-driven

Agile Plan-driven

® |ow criticality ® High criticality

® Senior developers ® |unior developers

® Requirements change very ® Requirements don't change too
often often

® Small number of developers ® |arge number of developers

® Culture that thrives on chaos ® Culture that demands order

What is an Agile Process!?

e Difficult to predict which requirements
will persist or change in the future.

® For many types of software, design and
development are interleaved.

® Analysis, design, construction, and testing
are not as predictable.

So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming

(1999-)

a4
R
aIs G
-y I-- —
BRI T I U
. NI R MBI °
a nIn .1 ..:":‘ ""‘“‘:; '-.‘ ': g eSI n
I l P g & Y T
WL
=
-) -
TR Fred
A T
Indlo CY ot
WP v LR
¥ .) [B
% I 4 v
VN e IR # *nad
R M g BT ey
PR Y A
ST v R
v ! s \
e 113 53
-~ 1
\ [} N . 4\
3
v

Software
Increment

Planning

Planning

® |n XP planning
takes place by
means of stories

® Fach story

captures essential
behavior

recte a new Bookind.
1 wont to becb\::d‘;s A scratch but
entering ghihe +¢ the customer,
: rder that suits :
in any © il mmypomtﬂ\o‘l'
check for availabiliy firm the
there is sufficient data.
bOOk'ng when s
_existing objec
‘:‘:ere we provide service. PRSI
P_Atmystagedu-ingmemﬁonofa
Booking I want to be able to create a
return- journey Booking. All relevant
details will be copied across into the
return Booking, with the pick-up and
drop-off locations reversed.

B
I want any Payment Method, and Telephone
created in a Booking to be associated
directly with the Customer, so I can re-use
them in a future booking. Where there are
multiple Payment Methods and Telephones,
I want the customer to be able to
specify which is the preferred one.

Iumtfabed:lc?oa‘emcaneuﬂooking
fmmmalmobjw.m
fheCuﬂow,mdthemfuudeymmf
Mcfhod.md Telephone are copied in

4

I want the Customer object to be able to
store Locations used by that customer
and to give them ‘nicknames’, with the
most frequently used Locations at the

top of the list. 5

I want a City object o hold a list of
common locations (e.g. Airports, Theatres).

6

I want to be able to create a new Booking
by dropping a Location directly onto
another Location, indicating pick-up and
drop-off. This should work whether T am
doing it from a Customer’s list of frequent
locations, or a City’s list, or both.

Extreme Programming

»

Software
Increment

Extreme Programming

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

Extreme Programming

»

Software
Increment

Coding

® Each story becomes
a unit test that
serves as
specification

continuously

refactored to have
the design match

Coding

® Jo ensure
continuous review,
XP mandates pair

Extreme Programming

»

Software
Increment

Testing

Unit tests

® detect errors

functionality

® measure progress

Extreme Programming

[
Plannlng
,Qd‘

Pri; LN
‘.r.: N ‘.

- -‘-": _': ROAR
; ”
e

® The resulting
prototypes result in
new stories

'.‘ 4 ‘ ‘
| e '.. !3 ;‘ ;"x« Z’."
ar 25 ".‘ >‘
Increment

xtreme Programming

40 SHOCKRESISTANT 20

7 JEWELS
Swige 3 0\"5'
e
- p

Software

Increment

Spot the Difference

Extreme Programming Code and Fix

(|9so-)

Build first version

S x
Modlfy until /
client is satisfied

Scrum

Scrum

An iterative and incremental agile software
development method for managing software
projects and product or application development.

Small working teams to maximize communication,
minimize overhead and maximize knowledge
sharing.

Adaptable to technical and business changes.

Yields frequent software increments that can be
inspected.

http://en.wikipedia.org/wiki/Agile_software_development

Scrum

® Development work and the people who perform it
are partitioned into clean, low coupling partitions.

® Constant testing and documentation is performed.

® Ability to declare project “done” whenever
required.

Scrum

every 24
hours

scrure 19 minuta daily meating.

Teams member respond to basics:
1) ¥¥hat did you do since last =crom

Mesting?
_ 2) Do vyou have any obstacles?
sSonnl Backiog. Backlog 3) What will you do before next

Feature(s) items 30 days mesting?

assigned Expanded
= & . ﬁ

N ew functionality
Is demonstrated
at end of sprint

Froduct Backiog

Friontized prodoct featuras desired by the customer

Scrum

Backlog: A prioritized list project requirements or
features that provide business value.

Sprints: Consists of work units that are required to
achieve a defined backlog into a predefined
time-box (usually 30 days).

Scrum Meetings: Short |15 mins. meetings held daily by the
scrum team. The Scrum master leads the
meeting.

Demos: Demonstrate software increment to the
customer for evaluation.

Your Sprints

H Top Layer (GUI) H

2. Top Layer

|. Core Use Case

Haves
Bottom Layer

SIMPLY EXPLAINED

DEVELOPMENT CYCLE

Code and Fix Waterfall Model
(

1968)

Communication
project mutaton
f I'l?.ll(oments
Planning
estmating
scheduling
tracking

Modeling
analysis
design

Construction

code
test
Deployment
delivery
support
feedback

Summary

Unified Process Extreme Pr

(1999) P

Inception - ‘
m wm i /0

ogramming

Production

x Elaboration
Modelling

Transition /M\ Construction

Deployment

